

A Requirement Specification Language
for AADL

Peter H. Feiler
Julien Delange
Lutz Wrage

June 2016

TECHNICAL REPORT
CMU/SEI-2016-TR-008

Software Solutions Division

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.sei.cmu.edu

http://www.sei.cmu.edu

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the
SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY
OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribu-
tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-
uted in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon®, Architecture Tradeoff Analysis Method®, and ATAM® are registered in the U.S. Patent
and Trademark Office by Carnegie Mellon University.

DM-0003425

mailto:permission@sei.cmu.edu

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table of Contents

Abstract iii

1 Introduction 1

2 The ReqSpec Notation 2
2.1 Stakeholder Goals 3

2.1.1 The Goal Construct 3
2.1.2 The Stakeholder Goals Construct 5

2.2 System Requirements 6
2.2.1 The System Requirement Construct 6
2.2.2 The System Requirement Set Construct 8
2.2.3 The Global Requirement Set and Global Requirement Constructs 9

2.3 Documents and Document Sections 10
2.4 Variables and Predicates 11

2.4.1 Constants and Computed Variables 11
2.4.2 Reusable Global Constants 12
2.4.3 Requirement Predicates 12

2.5 User-Definable and Predefined Category Types and Labels 13
2.6 Stakeholders and Their Organizations 14
2.7 Change Uncertainty 14
2.8 Design Goals 15

3 Guidelines for Using ReqSpec with AADL Models 16
3.1 Organizing ReqSpec Files 16
3.2 Defining Stakeholder Goal and System Requirement Sets 16
3.3 Requirement Sets and Component Extension Hierarchy 16
3.4 Requirement Refinement 17
3.5 Requirement Decomposition 17
3.6 Requirement References 18
3.7 Categorizing Goals and Requirements 18

4 Example Use of ReqSpec 19
4.1 Installing ReqSpec and ALISA in OSATE 19
4.2 ReqSpec Declarations in OSATE 19
4.3 An Example System in ReqSpec 22

5 Summary and Conclusion 24

Appendix Expression Support for ReqSpec 25

References 27

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Figures

Figure 1: A Project with ReqSpec and Organization Files 20

Figure 2: Dialog to Set Project References 20

Figure 3: Requirement Specification for the ASSA System 21

Figure 4: Requirement Predicate on Values 22

Figure 5: A Goal Set for ASSA Sensors 23

Figure 6: Example of Requirement Specification Aligned with an AADL Model 23

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Abstract

This report describes a textual requirement specification language, called ReqSpec, for the Archi-
tecture Analysis & Design Language (AADL). It is based on the draft Requirements Definition
and Analysis Language Annex, which defines a meta-model for requirement specification as an-
notations to AADL models. A set of plug-ins to the Open Source AADL Tool Environment
(OSATE) toolset supports the ReqSpec language. Users can follow an architecture-led require-
ment specification process that uses AADL models to represent the system in its operational con-
text as well as the architecture of the system of interest. ReqSpec can also be used to represent
existing stakeholder and system requirement documents. Requirement documents represented in
the Requirements Interchange Format can be imported into OSATE to migrate such documents
into an architecture-centric virtual integration process. Finally, ReqSpec is an element of an archi-
tecture-led, incremental approach to system assurance. In this approach, requirements specifica-
tions are complemented with verification plans. When executed, these plans produce evidence
that a system implementation satisfies the requirements. This report introduces the ReqSpec nota-
tion and illustrates its use on an example.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1 Introduction

This report describes a textual requirement specification language, called ReqSpec, for the Archi-
tecture Analysis & Design Language (AADL). It draws on the draft Requirements Definition and
Analysis Language (RDAL) Annex, which defines a meta-model for requirement specification as
annotations to AADL models.

The objective of ReqSpec is to support the elicitation, definition, and modeling of requirements
for real-time embedded systems in an iterative process. ReqSpec supports the refinement of re-
quirements along with the system design; qualitative and quantitative analysis of the created re-
quirements specification; and, finally, verification of the associated system architecture models to
ensure that they meet the requirements.

The draft RDAL Annex defines a meta-model for concepts related to requirement specification.
These concepts were drawn from the Requirements package of the Object Management Group
(OMG) Systems Modeling Language (SysML) [OMG 2015]. In addition, we have added many
other concepts to cover important aspects of requirements engineering methods not included in
SysML; these additional concepts come from the Federal Aviation Administration (FAA) Re-
quirements Engineering Management Handbook [FAA 2009], the KAOS1 method [Lamsweerde
2009], and IEEE Standard 830-1998: Recommended Practice for Software Requirements Specifi-
cations [IEEE 2009].

ReqSpec distinguishes between stakeholder requirements, referred to as goals, and system re-
quirements, referred to as requirements. Goals express stakeholder intent and may conflict with
each other, while system requirements represent a contract that a system implementation is ex-
pected to meet.

The ReqSpec notation accommodates several capabilities. First, it supports an architecture-led re-
quirement specification (ALRS) process. In this process, stakeholder goals are turned into verifia-
ble system requirement specifications by annotating an AADL model of the system of interest in
its operational environment and, as appropriate, elements of the system architecture. The report
Requirements and Architecture Specification of the Joint Multi-Role (JMR) Joint Common Archi-
tecture (JCA) Demonstration System introduced this process [Feiler 2015].

Second, ReqSpec supports the migration of existing stakeholder and system requirement docu-
ments into a set of files that become annotations to an AADL model of a system. For that purpose,
we have built a tool to import existing requirements documents in the OMG Requirements Inter-
change Format (ReqIF) as well as to export ReqSpec-based modifications.

We proceed by first introducing the syntax of the ReqSpec notation in Section 2. In Section 3, we
provide guidelines for using ReqSpec. Then, in Section 4, we illustrate its use in ALRS and de-
scribe the migration of existing requirement documents into an ALRS context.

1 KAOS stands for both Knowledge Acquisition in Automated Specification and Keep All Objectives Satisfied

[Lamsweerde 2009]. It is a goal-oriented approach to capturing software requirements.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2 The ReqSpec Notation

ReqSpec allows users to define goals, or stakeholder requirements, and requirements, or system
requirements. Goals are expressed by goal declarations and requirements by requirement declara-
tions.

Goals and requirements can be organized according to the architecture structure, by associating
them with AADL component types or implementations, or they can be organized according to a
document structure, in terms of document sections.

A stakeholder goal set declaration represents goals for a specific architecture component and con-
tains a set of goal declarations.

A system requirement set declaration represents requirements for a specific architecture compo-
nent and contains a set of system requirement declarations. Users can also declare a set of reusable
requirement declarations through a global requirement set declaration. Such reusable require-
ments can then be included in system requirement set declarations.

A goals document contains a document declaration that includes document section declarations
and goal declarations.

A requirements document contains a document declaration that includes document section decla-
rations and requirement declarations.

Summary of File Extensions
 For goals document, use the extension goaldoc.

 For requirements document, use the extension reqdoc.

 For stakeholder goal set, use the file extension goals.

 For system requirement set and global requirement set, use the extension reqspec.

The stakeholder goal set, system requirement set, global requirement set, goal document, and re-
quirement document constructs represent goal and requirement containers. They can have names
with <dot>-separated identifiers (e.g., aircraft.Autopilot). These names can be used to qualify
goals and the requirements contained in them.

A goal, system requirement, or global requirement has an identifier as a name. Goals and require-
ments can be referenced by their identifiers within the same container or by qualifying them with
their container (e.g., aircraft.Autopilot.Req1).

References are shown in the grammar as <Goal> or <Requirement>, indicating the type of ele-
ment being referenced.

Optional elements are shown as ()?. Elements repeated one or more times are shown as ()+, and
elements repeated zero or more times as ()*. For example:
 (dropped)?

 (DocReference)+

 (ConstantVariable)*

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The set of elements between square brackets, [], can appear in any order.

Finally, users should be aware that ReqSpec is case sensitive. This is different from AADL, which
is not case sensitive.

2.1 Stakeholder Goals

ReqSpec uses the Goal construct to represent individual stakeholder requirements. Stakeholder
goals can be organized in two ways:

 by the StakeholderGoalSet construct, to represent a collection of goals for a particular system
that is represented as an AADL component

 by the GoalsDocument construct that contains goals, possibly organized into a (nested) Docu-
mentSection to reflect the structure of an existing textual stakeholder requirement document

We proceed by describing the Goal and StakeholderGoals constructs. The GoalsDocument and
DocumentSection constructs are described in Section 2.2.3.

2.1.1 The Goal Construct

The Goal construct represents a stakeholder goal with respect to a particular system.

Goal ::=

goal Name (: Title)?

 (for TargetElement)?

[

 (category (CategoryReference)+)?

 (description Description)?

 (Constant)*

 (WhenCondition)*

 (rationale String)?

 (refines (<Goal>)+)?

 (conflicts with (<Goal>)+)?

 (evolves (<Goal>)+)?

 (dropped (String)?)?

 (stakeholder (<Stakeholder>)+)?

 (see goal (<Goal>)+)?

 (see document (DocReference)+)?

 (issues (String)+)?

 (ChangeUncertainty)?

]

Title ::= String

TargetClassifier ::= <AADL Component Classifier>

TargetElement ::= <ModelElement>

CategoryReference ::= <CategoryType>.<CategoryLabel>

Description ::= String (<Constant or Variable> | this | String)*

DocReference ::= URI to an element in an external document

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

WhenCondition ::=

 when in modes <Mode> (, <Mode>)*

 |

 when in error state <ErrorState> (, <ErrorState>)*

 |

 when expression

A goal declaration has the following elements:

 Name: an identifier that is unique within the scope of a goal container (requirement document
or stakeholder goal set).

 Title: a short descriptor of the goal. This optional element may be used as a more descriptive
label than the name.

 For: If present, it identifies the target of the goal within a system. The target is a model ele-
ment within the classifier, such as a port, end-to-end flow, or subcomponent. The enclosing
StakeholderGoalSet container specifies the component classifier of the system of interest.

 Category: list of category references without comma separation (see Section 2.5) to charac-
terize a stakeholder goal. Such labels can be used for specifying filtered views of stakeholder
goals.

 Description: a textual description of the goal. In its most general form, it can be a sequence of
strings, a reference to the classifier/model element identified by the for element (expressed by
the keyword this), or references to variables (defined next).

 Set of Constant: Constants are used to parameterize goal and requirement specifications.
Many changes to a goal or requirement appear in a value used in the goal or requirement
specification. Variables allow users to define a requirement value once and reference it in the
description, predicates, and separately specified verification plans. See Section 2.4 for details
on variables.

 WhenCondition: the condition under which the requirement applies. The condition is a set of
AADL modes (operational modes), error behavior states (failure modes) specified by the Er-
ror Model Annex Version 2 (EMV2), or a general expression on model properties using the
syntax of value predicate expressions (see the Appendix for details).

 Rationale: the rationale for a stakeholder goal as string.

 Refines: one or more references to other goals that this goal refines. Refinement of a goal
does not change the system for which the goal is specified; it represents a more detailed speci-
fication of a goal.

 Conflicts with: references to other goals that this goal is in conflict with.

 Evolves: references to other goals that this goal evolves from. This allows for tracking of
goals as they change over time.

 Dropped: If this keyword is present, the goal has been dropped and may be replaced by a goal
that has evolved from this goal. Users can provide a rationale for dropping the goal.

 Stakeholder: reference to a stakeholder. Stakeholders are grouped into organizations. Each
organization is defined in a separate file using the Organization notation.

 See goal: reference to a stakeholder goal in an imported stakeholder requirement document.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 See document: reference to an external document and element within it expressed as a Uni-
form Resource Identifier (URI). This element is used to record the fact that a stakeholder re-
quirement is found in a document other than an imported requirement document.

 Issues: allows users to record issues that may be encountered as a set of textual notes
(Strings).

 ChangeUncertainty: user-specified indication of stakeholder goal uncertainty with respect to
changes. The concept of change uncertainty is based on the work of Nolan and colleagues
[Nolan 2011]. See Section 2.7 for details on uncertainty specifications.

When a goal is used in a GoalsDocument, the for clause can consist of a target description string
or a classifier reference, optionally followed by a target element reference within that classifier.
These references allow goals found in existing stakeholder goals documents to be mapped into an
architecture model so that users can identify different systems for different goals in the same doc-
ument or document section.

2.1.2 The Stakeholder Goals Construct

The StakeholderGoalSet construct is a container for Goal declarations. It is typically used to
group together stakeholder goals for a particular system, namely, all goals that are associated with
an AADL component type or implementation.

StakeholderGoalSet ::=

stakeholder goals QualifiedName (: Title)?

 for (TargetClassifier | all)

 (use constants <GlobalConstantSet>*)?

 [

 (description)?

 (Constant)*

 (Goal)+

 (see document (DocReference)+)?

 (issues (String)+)?

]

QualifiedName ::= Identifier (. Identifier)*

A StakeholderGoalSet declaration has the following elements:

 QualifiedName: a unique name as a <dot>-separated sequence of identifiers.

 Title: a short descriptor of the stakeholder goal set. This optional element may be used as a
more descriptive label than the name.

 For: identifies the target of the set of stakeholder goals and references an AADL component
classifier. The keyword all is used to indicate a set of goals that can be applied to any system.

 Use constants: set of references to global constant definitions. The constants within the set
can be referenced without qualification.

 Description: a textual description of the stakeholder goals for a specific system. In its most
general form, it can be a sequence of strings, a reference to the classifier/model element iden-
tified by the for element (expressed by the keyword this), or references to constants.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Set of Constant: Constants are used to parameterize goal and requirement specifications.
Many changes to a goal or requirement appear in a value used in the goal or requirement
specification. Variables allow users to define a requirement value once and reference it in the
description, predicates, and separately specified verification plans. See Section 2.4 for details
on variables.

 Set of Goal: a set of goal declarations. All contained goals are intended to be associated with
the system represented by the classifier.

 See document: reference to an external document. This element is used to record the fact that
the origin of the stakeholder requirements in this container is the identified document.

 Issues: allows users to record issues that may be encountered as a set of textual notes
(Strings).

2.2 System Requirements

ReqSpec uses the SystemRequirement construct to represent an individual requirement for a spe-
cific system. A system requirement is intended to be verifiable and not in conflict with other re-
quirements. System requirement documents are modeled by the RequirementsDocument construct
(see Section 2.2.3). When representing system requirements in an AADL model of the system and
its operational context, users employ the SystemRequirementSet construct to represent a collection
of requirements for a particular system.

Users can also define requirements that are not specific to a particular system but are applicable to
any component or components of a specified set of component categories. Such a GlobalRequire-
mentSet can then be included in a SystemRequirementSet declaration as a set or as individual re-
quirements through an include statement.

We proceed by describing the SystemRequirement, SystemRequirementSet, and GlobalRequire-
mentSet constructs in turn. Note that the term system in system requirements is not limited to the
AADL system component category. A system may be represented by other categories as well,
such as abstract or device.

2.2.1 The System Requirement Construct

The SystemRequirement construct represents a requirement for a specific system.

SystemRequirement ::=

requirement Name (: Title)?

 (for TargetElement)?

[

 (category (CategoryReference)+)?

 (description Description)?

 (Variable)*

 (WhenCondition)?

 (Predicate)?

 (rationale String)?

 (mitigates (<Hazard>)+)?

 (refines (<Requirement>)+)?

 (decomposes (<Requirement>)+)?

 (inherits (<Requirement>)+)?

 (evolves (<Requirement>)+)?

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 (dropped (String)?)?

 (development stakeholder (<Stakeholder>)+)?

 (see goal (<Goal>)+)?

 (see requirement (<Requirement>)+)?

 (see document (DocReference)+)?

 (issues (String)+)?

 (ChangeUncertainty)?

]

A SystemRequirement declaration has the following elements:

 Name: an identifier that is unique within the scope of a requirement container (requirement
document or system requirement set).

 Title: a short descriptor of the requirement. This optional element may be used as a more de-
scriptive label than the name.

 For: If present, it identifies the target of the requirement within a system. The target is a
model element within the classifier, such as a port, end-to-end flow, or subcomponent. The
enclosing SystemRequirementSet container specifies the component classifier of the system of
interest.

 Category: list of category references without comma separation (see Section 2.5) to charac-
terize a requirement. Such labels can be used for specifying filtered views of system require-
ments.

 Description: a textual description of the requirement. In its most general form, it can be a se-
quence of strings, a reference to the classifier/model element identified by the for element
(expressed by the keyword this), or references to variables (defined next).

 Set of Variable: Constants and compute variables are used to parameterize requirement speci-
fications (see Section 2.4). Many changes to a goal or requirement appear in a value used in
the requirement specification. Variables allow users to define a requirement value once and
reference it in the description, predicates, and separately specified verification plans. See Sec-
tion 2.4 for details on variables.

 WhenCondition: the condition under which the requirement applies. The condition is a set of
AADL2 modes (operational modes), EMV2 error behavior states (failure modes), or a general
expression on model properties.

 Predicate: a formalized specification of the condition that must be met to indicate that the re-
quirement is satisfied. The predicate may refer to variables defined as part of this requirement
or the enclosing requirement specification set container. See Section 2.4.3 for details.

 Rationale: the rationale for a system requirement as a string.

 Mitigates: one or more references to hazards that this requirement addresses. The references
are to an element in an EMV2 error model associated with the AADL model.

 Refines: one or more references to other requirements that this requirement refines. Refine-
ment of a requirement represents a more detailed specification of a requirement for the same
system. Requirements for a system are refined until they become verifiable.

 Decomposes: one or more references to requirements of an enclosing system that this require-
ment is derived from. This element provides traceability across architecture layers.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Inherits: one or more references to requirements of an enclosing system that is being inherited
as a whole. For example, requirements on interfaces of an enclosing system can be inherited
by those subsystems that directly take the input or produce the output of the enclosing system.
This element provides traceability across architecture layers.

 Evolves: references to other goals that this goal evolves from. This element allows for track-
ing of goals as they change over time.

 Dropped: If this keyword is present, the requirement has been dropped and may be replaced
by a goal that has evolved from this goal. Users can provide rationale for dropping the re-
quirement.

 Development Stakeholder: reference to a stakeholder from the development team, such as a
security engineer or a tester. During architecture design, design choices may lead to new re-
quirements, whose stakeholder is the developer making the choice. Stakeholders are grouped
into organizations. Each organization is defined in a separate file using the Organization nota-
tion.

 See goal: reference to one or more stakeholder goals that the requirement represents. The
goals are assumed to be declared in a StakeholderGoalSet or a GoalsDocument.

 See requirement: reference to a system requirement in an imported system requirement docu-
ment (RequirementsDocument).

 See document: reference to an external document and optional element within expressed as a
URI. This element records the fact that a system requirement is found in a document other
than an imported requirement document.

 Issues: allows users to record issues that may be encountered as a set of textual notes
(Strings).

 ChangeUncertainty: user-specified indication of stakeholder goal uncertainty.

When a requirement is declared in a RequirementsDocument, the for clause can consist of a target
description string or a classifier reference followed by a target element reference within that clas-
sifier. These references allow requirements found in existing system requirements documents to
be mapped into an architecture model so that users can identify different systems for different re-
quirements within the same document or document section.

2.2.2 The System Requirement Set Construct

The SystemRequirementSet construct is a container for a set of SystemRequirement declarations. It
is used to group together system requirements for a particular system, namely, all requirements
that are associated with an AADL component type or implementation.

SystemRequirementSet ::=

system requirements QualifiedName (: Title)?

 for TargetClassifier

 (use constants <GlobalConstantSet>*)?

[

 (description Description)?

 (Variable)*

 (SystemRequirement)*

 (include <GlobalRequirementSet or global requirement> (for ComponentCategory+ |
self)

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 (see document (DocReference)+)?

 (see goals (<StakeholderGoals or GoalsDocument>)+)?

 (issues (String)+)?

]

A SystemRequirementSet declaration has the following elements:

 QualifiedName: a unique name as a <dot>-separated sequence of identifiers.

 Title: a short descriptor of the system requirement set. This optional element may be used as a
more descriptive label than the name.

 For: identifies the target of the set of contained system requirements by a reference to an
AADL classifier.

 Use constants: set of references to global constant definitions. The constants within those sets
can be referenced without qualification.

 Description: a textual description of the system requirements for a specific system. In its most
general form, it can be a sequence of strings, a reference to the classifier/model element iden-
tified by the for element (expressed by the keyword this), or references to variables (defined
below).

 See document: reference to an external document. This element is used to record the fact that
the origin of the system requirements in this container is the identified document.

 See goals: reference to StakeholderGoalSet or GoalsDocument.

 Set of Variable: Constant and compute variables are used to parameterize requirement speci-
fications (see Section 2.4). Many changes to a goal or requirement appear in a value used in
the requirement specification. Variables allow users to define a requirement value once and
reference it in the description, predicates, and separately specified verification plans. See Sec-
tion 2.4 for details on variables.

 Set of Requirement: a set of requirement declarations. By default, all requirements are associ-
ated with the entity represented by the classifier. A requirement declaration may specify a
model element within the classifier as its target in for.

 Include: reference to a global requirement set or a global requirement inside a global require-
ment set. The given component is the root of the component hierarchy in which the global re-
quirement(s) apply. The for indicates the component categories to which the requirement
applies. Self indicates that the global requirement applies only to the component itself.

 Issues: allows users to record issues that may be encountered as a set of textual notes
(Strings).

2.2.3 The Global Requirement Set and Global Requirement Constructs

The GlobalRequirementSet construct is a container for GlobalRequirements declarations. It is
used to group together system requirements that can be applied to a number of systems; they then
represent a reusable set of requirements that can be included with a SystemRequirementSet decla-
ration.

GlobalRequirements ::=

global requirements QualifiedName (: Title)?

(use constants <GlobalConstantSet>*)?

[

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 (description Description)?

 (see document (DocReference)+)?

 (see goals (<StakeholderGoals or GoalsDocument>)+)?

 (Variable)*

 (GlobalRequirement)*

 (issues (String)+)?

]

The GlobalRequirement construct represents a reusable requirement specification that is generally
applicable, may be restricted to certain AADL component categories, or may applicable to all
connections.

GlobalRequirement ::=

requirement Name (: Title)?

 (for ComponentCategory+ | connection)?

[

 // Same as for SystemRequirement

]

ComponentCategory ::= abstract | system | <other AADL component categories>

2.3 Documents and Document Sections

The Document construct allows users to organize stakeholder goals or system requirements into
document sections to mirror existing documentation. This construct supports the import of exist-
ing stakeholder requirement or system requirement documentation into ReqSpec.

A Document contains a set of document sections and stakeholder goals or system requirements. A
DocumentSection can recursively contain document sections and stakeholder goals or system re-
quirements.

A GoalsDocument contains only stakeholder goals, while a RequirementsDocument contains only
system requirements.

GoalsDocument ::=

document QualifiedName (: Title)?

[

 (description String)?

 (Goal | GoalsDocumentSection)+

 (issues (String)+)?

]

GoalsDocumentSection ::=

section Name (: Title)?

[

 (description String)?

 (Goal | DocumentSection)+

 (issues (String)+)?

]

RequirementsDocument ::=

document QualifiedName (: Title)?

[

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 (description String)?

 (Requirement | RequirementsDocumentSection)+

 (issues (String)+)?

]

RequirementsDocumentSection ::=

section Name (: Title)?

[

 (description String)?

 (Requirement | DocumentSection)+

 (issues (String)+)?

]

GoalsDocument and RequirementsDocument declarations have the following elements:

 QualifiedName: a unique name as a <dot>-separated sequence of identifiers.

 Title: a short descriptor of the stakeholder goal container. This optional element may be used
as a more descriptive label than the name.

 Description: a textual description of the requirement document content.

 Set of Goal, Requirement, or DocumentSection: a set of goal, requirement, or document sec-
tion declarations that reflect the content of a requirement document.

 Issues: allows users to record issues that may be encountered as a set of textual notes
(Strings).

A DocumentSection declaration has the following elements:

 Name: an identifier that is unique within the enclosing container. Section names are not in-
volved in referencing goals or requirements contained in a document section.

 Title: a short descriptor of the document section container. This optional element may be used
as a more descriptive label than the name.

 Description: a textual description associated with a requirement document section.

 Set of Goal, Requirement, or DocumentSection: a set of goal, requirement, or document sec-
tion declarations that reflect the content of a requirement document.

 Issues: allows users to record issues that may be encountered as a set of textual notes
(Strings).

2.4 Variables and Predicates

2.4.1 Constants and Computed Variables

ReqSpec allows the user to introduce Constants to localize common changes to a stakeholder goal
or system requirement. Constants act as parameters that can be referenced by Description ele-
ments in goal and requirement declarations and by Predicate elements in requirement declara-
tions. Their values can be expressions that result in numeric values with an optional measurement
unit; numeric value ranges; and Booleans, strings, references to model elements, and values of
any user-defined property type. Acceptable measurement units are any unit defined as Units liter-
als in property sets of the AADL core language. See Appendix for expression syntax details. The
type is inferred from the value when not explicitly declared. Users can optionally specify that the

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

value of a property identified by the as for the model element must be the same as the constant
value.

A predicate for a requirement typically compares an expected value against a value that has been
computed or measured during a verification activity. The ComputedVariable declaration allows
the user to introduce the name of such variables explicitly. They can then be referenced in predi-
cate declarations. They can also be referenced in verification plans that complement requirement
specifications in the architecture-led incremental system assurance (ALISA) workbench [Delange
2016].

Variable ::=

 Constant | ComputedVariable

Constant ::=

val Name (: TypeSpec)? = Expression (as <PropertyName>)?

ComputedVariable ::=

compute Name : TypeSpec

TypeSpec ::= BaseType | typeof <PropertyName>

BaseType ::= boolean | string | integer (units <UnitsTypeName>)?

 | real (units <UnitsTypeName>)? | model element | <PropertyTypeName>

2.4.2 Reusable Global Constants

In some cases, users might want to define a set of constants that they can reference within the sys-
tem requirement specification of any system component. Such global constants are defined in
global constant sets in files with the extension constants. The following syntax is used in those
files:

GlobalConstantSet ::=

 constants QualifiedName

[Constant+]

These global constant sets are then made accessible to a stakeholder goal set, system requirement
set, or global requirement set through a use constants declaration. This allows users to reference
these constants without qualification.

2.4.3 Requirement Predicates

ReqSpec supports the specification of predicates as a formalization of a requirement. Predicates
must be satisfied as part of a verification activity in a verification plan to produce evidence that
the requirement is met. In many verification activities, an actual value from a system implementa-
tion is verified against an expected value. The actual value may be computed by an analysis or
measured in a simulation, test execution, or operation.

Users can specify predicates in one of several forms:

 Free form: informal predicate "informal specification"
The user informally specifies a predicate as text. This allows users to quickly specify a predi-
cate without needing to know the exact syntax of a particular notation.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Value assertion: value predicate Expression
Expressions compare actual values against expected values. This is done by comparing
ReqSpec constant values, AADL property constants, AADL property values associated with
the system component in an AADL model, and computed values represented by a Computed-
Variable. Constants and computed variables are referenced by their names. AADL property
and property constant references are prefixed by #. The expression language includes the op-
erators and, or, not, ==, !=, >=, <=, >, <, >< (contained in range), +, -, *, /, div (integer di-
vide), and mod. It supports parentheses and functions such as min, max, round, and abs. See
the Appendix for details.
For example, a user specifies ActualCPUBudget <= MaxCPUBudget, where MaxCPUBudget is a
constant and ActualCPUBudget is a computed variable.

 Behavioral assertion: A future version of ReqSpec will support behavioral predicate syntax.
Meanwhile users can specify behavioral assertions through the informal predicate construct.

2.5 User-Definable and Predefined Category Types and Labels

ReqSpec allows users to associate category labels with goals and requirements. Users can also as-
sociate category labels with verification methods and verification activities in verification plans.

Users can then define filters on those category specifications to focus on subsets of requirements
and verification activities, such as for verifying key quality attributes or verification activities rel-
evant to certain development phases.

Categories are declared in a separate file with the extension cat using the following syntax:

Categories ::= (CategoryType)+

CategoryType ::=

Name [(CategoryLabel)+]

The name of each category type must be unique among category types. Labels must be unique
within a category type. A category is referenced by its type and label—for example, Kind.Guar-
antee.

The following category types have been predefined in the ALISA workbench:

 Kind: to indicate the kind of requirement.

 Guarantee: guarantee made by a system to its environment, typically about its output.

 Assumption: assumption made by a system about its environment, typically about its in-
put.

 Exception: exceptional condition such as a safety hazard or security vulnerability that the
requirement addresses.

 Constraint: a constraint on the implementation of a system, typically on the subcompo-
nents and their properties, states, and connectivity.

 Consistency: a consistency constraint between information in ReqSpec and an AADL
model or between models. For example, the values of ReqSpec constants must be con-
sistent with property values in the AADL model.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Quality: to represent operational quality attributes that the requirement addresses. The follow-
ing category literals are included: Behavior, State, Timing (schedulability), Latency (response
time), Safety, Security, Reliability, Availability, CPUUtilization, MemoryUtilization, Net-
workUtilization, Mass, and ElectricalPower.

 Phase: to represent development phases, including SystemRequirements, ArchitectureDesign,
PDR, CDR, DetailedDesign, Implementation, UnitTest, and SystemTest.

 Layer: tier of a layered architecture, including Tier1, Tier2, Tier3, Tier4, and Tier5.

Users can define their own category types. Users can also extend predeclared category types by
defining additional category labels using the CategoryType declaration.

2.6 Stakeholders and Their Organizations

The organization notation allows users to define organizations and stakeholders that belong to or-
ganizations. Stakeholder names must be unique within an organization. Stakeholders are refer-
enced by qualifying them with the organization name. Each organization is declared in a separate
file with the extension org. This example shows how to declare organization and stakeholder
names and the optional elements users can include for each stakeholder.

Organization::=

organization Name

 (Stakeholder)+

Stakeholder ::=

stakeholder Name

[

 (full name String)?

 (title String)?

 (description String)?

 (role String)?

 (email String)?

 (phone String)?

 (supervisor <Stakeholder>)?

]

2.7 Change Uncertainty

Various techniques are commonly used to prioritize change. For example, in the Architecture
Tradeoff Analysis Method® (ATAM®), criticality and difficulty of change are used to prioritize
use cases during an architecture evaluation. Safety analysis practices such as SAE ARP4761 use
likelihood of occurrence and severity of impact to prioritize hazards [SAE 1996] and derive de-
sign assurance levels (DALs) to focus on high-payoff reduction of safety risk.

We introduce the concept of change uncertainty to assess the volatility to change and the impact
of change.

Volatility represents the likelihood of change to a requirement or architecture design. Volatility
may reflect several indicators, such as familiarity with a system (i.e., whether such a system has
been developed before) or frequent changes in the operational environment.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Impact represents the effort involved in performing the change and addressing its impact on other
parts of a system. It may reflect indicators such as system complexity and precedence in technol-
ogy use.

These measures can identify high-payoff opportunities for reducing requirement change. Nolan
and colleagues have demonstrated that reduction of up to 50% of requirement changes can be
achieved based on expert assessment of such categorical measures [Nolan 2011].

2.8 Design Goals

RDAL distinguishes between verifiable and satisfiable requirements. Verifiable requirements
must be met, and testing will provide a true/false result. In ReqSpec, all system and global re-
quirements must be verifiable. Satisfiable requirements are quantified and must be met to a certain
degree.

ReqSpec supports the specification of desirable target values that a system design is expected to
satisfy. It does so in the context of a value predicate for a requirement. The value predicate speci-
fies the value or value range that the system must meet (a verifiable requirement). This predicate
can optionally be augmented with a desirable target value that is above or below the required
value or value range (a satisfiable requirement). It is specified by optionally adding the following
to value predicates:

with (<constant> upto | downto <value>)+

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3 Guidelines for Using ReqSpec with AADL Models

This section provides some general guidelines on using ReqSpec with AADL models. ReqSpec is
supported in OSATE by the workbench extension ALISA, which supports architecture-led incre-
mental system assurance throughout the lifecycle [Delange 2016]. Section 4.1 provides details on
installing ReqSpec and ALISA in OSATE.

3.1 Organizing ReqSpec Files

Users create files that contain stakeholder goal sets, system requirement sets, global requirement
sets, goals, and requirements in document-structured format, global constants, stakeholders in or-
ganizations, and category types by creating files with the appropriate extensions. Users can place
these files in folders within a project that contains the AADL model; for instance, users can create
a folder named requirements at the same level within a project as a folder called packages that
contains AADL packages. Users can also place these files in a project separate from the AADL
model of a system. In this case, users must set the project references for the projects within
OSATE/Eclipse.2

3.2 Defining Stakeholder Goal and System Requirement Sets

When users define stakeholder goals and system requirements in an architecture-led fashion, they
define stakeholder goal sets and system requirement sets for an AADL component type or imple-
mentation. It is recommended, but not required, that users name these goal sets or requirement
sets with the same name as the qualified name of the component classifier using “.” instead of “::”
to separate identifiers.

When users define stakeholder goals and system requirements in a document format, goals and
requirements can be organized into document sections. There is no restriction as to whether two
goals or requirements in one section are associated with the same or different system components.

In the following sections, we describe usage in terms of requirements. The same principals apply
to goals.

3.3 Requirement Sets and Component Extension Hierarchy

AADL allows users to define a component type and to define extensions that add or refine fea-
tures and other type elements. Similarly, users can associate one or more implementations with a
component type, and component implementations can be extensions of other component imple-
mentations.

Users define a separate requirement set for the original component type and a separate require-
ment set for the component type extension. The requirements in a system requirement set are as-
sociated with the component classifier identified in the for reference of the system requirement

2 Set the project references using the pull-down menu Project → Properties → Project References, as shown in

Figure 2.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

set. Users can target a requirement to a specific element in a component type or implementation
by a for reference in the requirement declaration.

Requirements defined for the original component type are inherited by the extension. This means
that a requirement set of the extension can focus on requirement declaration for additions or re-
finements of the component type. For refinement, a requirement declaration associated with the
original component type may need to be rephrased. In this case, the rephrased requirement can be
linked to the original requirement with an evolves reference.

Similarly, users may define requirements on component implementations. These represent re-
quirements for the particular component variant and requirements that represent implementation
constraints. Note that requirements associated with a component type apply to implementations of
that type, so the implementation is expected to satisfy these requirements.

3.4 Requirement Refinement

A requirement may be refined into subrequirements to provide a more precise specification and to
make the requirement verifiable. Users do this by placing the refined requirement in the same sys-
tem requirements set as the original and by identifying the original in a refines reference.

In the ALISA workbench, users indicate that requirements are verifiable by associating verifica-
tion plans with requirement sets. For each requirement, the verification plan contains a claim that
specifies a set of verification activities to demonstrate that the requirement is met. The result of
performing or executing a verification activity represents evidence that the requirement is met or
not met. If all refined requirements are met, then the requirement being refined is considered veri-
fied as well.

3.5 Requirement Decomposition

When a system architecture is elaborated by defining a component implementation—that is, a
blueprint—requirements for a system may be decomposed into requirements for its subsystems.
Users might want to provide traceability of this decomposed requirement to the original by adding
decomposes references to the original requirement.

Users can record a decomposed requirement in two ways: as a requirement associated with the
subcomponent, identified as for the target element, or as a requirement declared for the compo-
nent classifier referenced by the subcomponent.

In the first case, the decomposed requirement represents an implementation constraint from a par-
ticular use context. The constraint is declared in a requirement set associated with a component
implementation, which allows the for reference to the subcomponent as the target element. When
a supplier provides a subcomponent, this use context requirement must be verified on the pro-
vided component implementation.

In the second case, the user accumulates requirements from different use contexts within their de-
sign in a single location, namely, the component type referenced by all subcomponent declara-
tions.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.6 Requirement References

Users can reference requirements (and goals) by just their name if the context uniquely identifies
them. This is true when the referenced requirement appears in the same system requirements set
or when the requirement is contained in a system requirements set that is associated with a classi-
fier in the extends hierarchy of the target classifier.

In some cases, requirements must be qualified with the name of the enclosing system require-
ments set. This is the case for references from system requirements of a subsystem to require-
ments of a system (decomposed requirements) or from system requirements to stakeholder goals.
For qualified references, the system requirement set that contains the requirement must be identi-
fied.

3.7 Categorizing Goals and Requirements

Users can associate category labels of different category types with requirements and goals. This
allows users to create filtered views of requirements and verification plans, for example, to focus
on safety and performance requirements. Section 2.5 introduced the predefined category types and
labels.

The categorization also allows users to assess requirements coverage and verification early and
throughout the development lifecycle. For example, the ALISA workbench can assess whether
every feature of a component type has a requirement, whether requirements regarding the state
(e.g., in the form of AADL modes) and behavior have been specified, and whether quality attrib-
utes of interest and exceptional conditions leading to safety hazards or security risks have been
covered. Similarly, categorization of verification activities according to phase allows the ALISA
workbench to ensure that potential issues in a system design are discovered as early as possible
through appropriate verification activities.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4 Example Use of ReqSpec

This section describes the use of ReqSpec in OSATE. First, we describe how to create ReqSpec
files in OSATE. Then we illustrate several use scenarios on an example.

4.1 Installing ReqSpec and ALISA in OSATE

The most recent release of OSATE (2.2.1) includes ReqSpec. Users can extend an installation of
OSATE [OSATE 2016] with the ALISA extension [ALISA 2016]. Users can also include a copy
of an Eclipse project called AlisaBasics,3 which contains the predefined category types and a veri-
fication method registry for the analysis plugins available in OSATE. This project and example
projects using ReqSpec and ALISA are available at https://github.com/osate/alisa-examples.

4.2 ReqSpec Declarations in OSATE

In this section, we describe how ReqSpec files are created, updated, and analyzed through an
Xtext-based textual editor. A navigator, forms, and a graphics-based user interface are currently in
development.

Figure 1 shows the AADL Navigator on the left. The SituationalAwarenessSystem project con-
tains AADL model packages organized into subfolders. In this example, we put the ReqSpec files
into a separate folder called Requirements, where the requirements folder is at the same level as
the folder packages that contain the AADL model. Note the different extensions used to distin-
guish between different types of ReqSpec files.

The right-hand side shows a specification of system requirements. The editor understands the syn-
tax of the ReqSpec notation. It provides syntax coloring and ensures that each element of a stake-
holder specification, such as the phone number, is specified at most once. It also supports content
assist. When the user types <Ctrl> <spacebar>, the editor provides syntactically legal choices.

3 In the near future, AlisaBasics will be included automatically.

https://github.com/osate/alisa-examples

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 1: A Project with ReqSpec and Organization Files

The ReqSpec files could be placed in a separate project if desired. In that case, the user will have
to add a Project Reference into the project containing the ReqSpec files to reference the project
containing the AADL models. This tells the ReqSpec tool where to find the AADL model.

Use the properties dialog to set the project references for the project containing the ReqSpec files.
To do this, select the project in the AADL navigator and invoke the properties dialog through the
context menu. An example dialog is shown in Figure 2.

Figure 2: Dialog to Set Project References

New ReqSpec (reqspec, goals, reqdoc, goaldoc), Category (cat), or Organization (org) files are
created by invoking File/New/File and specifying a file name with the appropriate extension.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 3 shows a set of requirement specifications for the ASSA system. These requirements orig-
inally came from a requirement document; using the import tool, we migrated them into a
ReqSpec annotation in an AADL model.

Figure 3: Requirement Specification for the ASSA System

The top-level requirement specification (e.g., for ASSASystem::ASSASystem) identifies the classi-
fier of the ASSA system. The reference is qualified by the package name containing the classifier.
These references are hyperlinked to their target. When the user holds down the <Ctrl> key while
pausing the cursor over the reference, it appears as a hyperlink (i.e., underlined) that can be fol-
lowed by clicking on it. Navigation by hyperlink is tracked in a navigation history. Users can re-

turn to the reference origin via navigational commands or toolbar buttons:

The first requirement indicates that it is associated with an interface feature of the ASSA system
called the AMPSInterface. This association reflects the fact that it is a requirement for the interac-
tion between the ASSA system and an Aviation Mission Planning System (AMPS). The See goal
elements identify several stakeholder goals that reflect the need for an interaction between the
ASSA system and AMPS.

The second requirement is for the same interface feature and in its original text indicates the name
of the interface for the interaction with a mission planning system.

The third requirement is associated with a different interface feature of the ASSA system.

Figure 4 illustrates a requirement with a parameterized value. The value of the desired observation
radius is captured in the variable called DesiredObservationRadius. This variable is used in the
requirement description and in the requirement predicate. The requirement predicate assures that
any MeasuredDistance result from a verification activity is at least as large as the desired observa-
tion radius. Finally, the last line in this figure shows that the stakeholder requirement for this sys-
tem requirement can be found as a goal in an imported requirement document.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 4: Requirement Predicate on Values

The ReqSpec/ALISA workbench performs consistency checks, such as confirming traceability of
a goal or requirement to a stakeholder and ensuring that every component and interface feature
has at least one requirement associated with it.

4.3 An Example System in ReqSpec

We used ReqSpec in three ways for the ASSA system.

First, we imported the contents of the stakeholder requirement document and the system/subsys-
tem specification for a system called the Modular Integrated Survivability (MIS) system into the
OSATE environment. We named these files MISStakeholderRequirements.goaldoc and MIS-
SSS.reqdoc. In this case, the requirements are initially not associated with an AADL model. Once
we have imported the contents, users can create an AADL model and manually associate the re-
quirements from the requirement document with the model. In the process, users may associate
different requirements from the same document section with different components in the AADL
model. The ReqSpec tool has an analysis feature that identifies document sections that span multi-
ple system components.

Second, we created stakeholder goals sets and system requirements sets that are associated with
different systems in the architecture. We then created a separate file for each of the AADL pack-
ages. The files contain sets of goal and requirement specifications, one for each component speci-
fication in the AADL package.

Figure 5 shows an example of a stakeholder goals set specified for a component called the ASSA-
Sensor. The keyword stakeholder goals introduces a name for a set of goals associated with the
ASSASensor. Each goal specification has a unique name within the goal set. In our example, it in-
cludes a title, description, stakeholder reference, and list of references to the MIS stakeholder re-
quirement document.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

stakeholder goals SensorGoals for ASSASensors::ASSASensor

[goal goal1

 title: "Passive ASE (ASSA sensor type)";

 [description: "MIS shall support passive SA sensors (ASE)";

 stakeholder mrj.ab

 see requirement: MISStakeholderRequirements.SR_13,

 MISStakeholderRequirements.SR_69, MISStakeholderRequirements.SR_15;

]

]

Figure 5: A Goal Set for ASSA Sensors

Third, we illustrated requirement specifications that use variables to parameterize the requirement
and specify that a property in the AADL model should have the same value as the variable or a
particular value. This practice ensures that a verification activity operating on the model utilizes
the correct values when performing the verification. In Figure 6, we show two example scenarios.
One uses a constant in a value predicate to indicate that the value of the variable and a specific
AADL property must be the same. In the other, the variable value is passed as a parameter to a
verification activity.

In our first example, the user has developed the model with a property JMRMIS::EnergyLevel. In
this case, we specify in a value predicate that the constant value is consistent with the property
value.

In the second example, the value of the requirement is defined by a constant; in our example, it is
called DesiredObservationRadius. This value will then be used in a verification plan associated
with the requirements to indicate that its value is to be passed to a verification method via a prop-
erty in the AADL model. In this case, the AADL model is automatically annotated with the ap-
propriate property value. Note that specifications of verification activities are expressed by the
Verify notation, which is part of the incremental lifecycle assurance tool environment.

system requirements PassiveSensorReqs for ASSASensors::PassiveTerrainSensor

[

requirement Req4 : "Passive sensor"

 [

 val EnergyLevel = 0

 description "Passive sensor radiates " EnergyLevel " energy"

 value predicate #JMRMIS::EnergyLevel == EnergyLevel

 see goal MISStakeholderRequirements.SR_27

]

 requirement Req1 : "Spherical terrain awareness for aircrew"

 for TerrainSphere

 [

 description "Spherical SA of terrain within " DesiredObservationRadius " radius for
aircrew"

 val DesiredObservationRadius = 5 nm

 compute measuredDistance : JMRMIS::NauticalDistance

 value predicate measuredDistance >= DesiredObservationRadius

 see goal MISStakeholderRequirements.SR_27

]

]

Figure 6: Example of Requirement Specification Aligned with an AADL Model

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5 Summary and Conclusion

This report introduced a textual notation called ReqSpec to specify stakeholder and system re-
quirements and associate them with AADL models. ReqSpec supports an architecture-led require-
ment specification process that utilizes AADL models to specify requirements of a target system
in its operational context, safety requirements derived from identified hazards, and derived re-
quirements for subsystems as the system architecture evolves. It draws on goal-oriented require-
ments engineering concepts to distinguish between stakeholder requirements that may conflict
with each other and system requirements that must be verifiable and may have satisfiable design
goals. Verification plans, expressed in a separate notation, specify how the user intends to verify
that designs and implementations meet the requirements. As such, the ReqSpec notation is a key
element of an incremental lifecycle assurance approach to developing critical software-reliant sys-
tems.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix Expression Support for ReqSpec

This appendix describes the initial expression support for ReqSpec in the OSATE 2.2.1 mainte-
nance release of May 2015. The expression notation will be aligned with the emerging AADL
Constraint Annex. Please check the online help in the most recent OSATE release for current ca-
pabilities.

Table 1: Operators and Their Precedence in ReqSpec Expressions

Prece-
dence

Category Operator

1 (lowest) Logical OR <Boolean> or <Boolean>
2 Logical AND <Boolean> and <Boolean>
3 Equality <expression> == <expression>

<expression> != <expression>
4 Relational <numeric> < <numeric> also <=, >, >=

<range> < <range> also <=, >, >=
<numeric> >< <range> (value included in range)
<range1> >< <range2> (range1 included in range2)
Numeric or range expressions on the left- and right-hand sides must use the
same unit type, if any.

5 Additive <numeric> + <numeric> also -
<range1> + <range2> (smallest range containing both ranges)

Numeric or range expressions on the left- and right-hand sides must use the
same unit type, if any.

6 Multiplicative <numeric> * <numeric>
<real> / <real>
<integer> div <integer> also mod
<range> * <range> (range intersection)

For multiplication, at most one argument may have a unit type.
For division, if the right-hand argument has a unit, it must be of the same type
as the unit on the left-hand side.

7 Unary + <numeric>
- <numeric>
not <Boolean>

Primary Expressions
1. Unit operations for numeric expressions:

a. Unit assignment to a unitless expression:
<primary expression> <unit name>
Example: (x + 1) ms, where X is an integer or real value without a unit

b. Conversion to numeric value without a unit:
<primary expression> in <unit name>
Example: (2.0ms) in ns, evaluates to 2000

c. Conversion to different unit:
<primary expression> % <unit name>
Example: (2ms) % ns, evaluates to 2000 ns

2. Conditional expression:
if <Boolean> then <expression1> else <expression2> endif
Both expression1 and expression2 must have the same type.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3. Reference to a model element:
this.<element name>.<element name>. … .<element name>
The keyword this refers to the target classifier of the requirement or requirement set.

4. Reference to a property value in a model:
<model element>#<property name>
#<property name> (short form of this#<property name>)
The property name must be a property or a property constant; the model element must be ei-
ther a literal model element reference or a value of type model element.

5. Literals with examples:

a. Boolean literal: true, false

b. Integer literal, optionally with unit: 2000, 20ms

c. Real literal: 12.5, 2.5ms

d. String literal: “strings are enclosed in double quotes”

e. Range literal: [1 .. 5], [500ms .. 2s]
Note that a space character is required before the two dots.

6. Automatic type conversion between real and integer occurs to match the target type. For
example, users can assign an integer value (numeric value without a decimal point) to a
constant of type real. Similarly, addition of an integer value and a real value results in
a real value.

7. The following built-in functions are supported:

a. min, max: minimum or maximum value of a range

b. abs: absolute value

c. floor, ceil, round: next lower, higher, and closest integer values for a given
real value

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

References

[ALISA 2016]
Architecture-Led Incremental System Assurance (ALISA) Workbench. Computer software. Soft-
ware Engineering Institute, Carnegie Mellon University. 2016. https://github.com/osate/alisa

[Delange 2016]
Delange, J., Feiler, P., and Ernst, N. Incremental Life Cycle Assurance of Safety-Critical Systems.
In Proceedings of the Eighth European Congress on Embedded Real Time Software and Systems.
Toulouse, France. January 2016. http://www.erts2016.org/inc/telechargerPdf.php?pdf=paper_13

[FAA 2009]
Federal Aviation Administration. Requirements Engineering Management Handbook.
DOT/FAA/AR-08/32. FAA. 2009. http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-
ware/media/AR-08-32.pdf

[Feiler 2015]
Feiler, Peter. Requirements and Architecture Specification of the Joint Multi-Role (JMR) Joint
Common Architecture (JCA) Demonstration System. CMU/SEI-2015-SR-031. Software Engineer-
ing Institute, Carnegie Mellon University. 2015. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=447184

[IEEE 2009]
Institute of Electrical and Electronics Engineers. IEEE Standard 830-1998: Recommended Prac-
tice for Software Requirements Specifications. IEEE Standards Association. 2009.

[Lamsweerde 2009]
Lamsweerde, Axel van. Requirements Engineering: From System Goals to UML Models to Soft-
ware Specifications. Wiley. 2009.

[Nolan 2011]
Nolan, A. J.; Abrahao, S.; Clements, P.; and Pickard, A. Managing Requirements Uncertainty in
Engine Control Systems Development. 259–264. 19th IEEE International Requirements Engi-
neering Conference (RE). Aug. 29–Sep. 2, 2011. http://ieeexplore.ieee.org/xpls/abs_all.jsp?ar-
number=6051622&tag=1

[OMG 2015]
Object Management Group. OMG Systems Modeling Language. OMG. 2015.
http://www.omgsysml.org

[OSATE 2016]
Open Source AADL Tool Environment (OSATE), Version 2. Computer software. Software Engi-
neering Institute, Carnegie Mellon University. 2016. https://wiki.sei.cmu.edu/aadl#OSATE

https://github.com/osate/alisa
http://www.erts2016.org/inc/telechargerPdf.php?pdf=paper_13
http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-ware/media/AR-08-32.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-ware/media/AR-08-32.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-ware/media/AR-08-32.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447184
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447184
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447184
http://ieeexplore.ieee.org/xpls/abs_all.jsp?ar-number=6051622&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?ar-number=6051622&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?ar-number=6051622&tag=1
http://www.omgsysml.org
https://wiki.sei.cmu.edu/aadl#OSATE

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[SAE 1996]
SAE International. ARP4761: Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment. SAE. 1996.

CMU/SEI-2016-TR-008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

June 2016

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE
A Requirement Specification Language for AADL

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Peter H. Feiler, Julien Delange, and Lutz Wrage

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2016-TR-008

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom
Enterprise Acquisition Division
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report describes a textual requirement specification language, called ReqSpec, for the Architecture Analysis & Design Language (AADL). It is
based on the draft Requirements Definition and Analysis Language Annex, which defines a meta-model for requirement specification as annota-
tions to AADL models. A set of plug-ins to the Open Source AADL Tool Environment (OSATE) toolset supports the ReqSpec language. Users can
follow an architecture-led requirement specification process that uses AADL models to represent the system in its operational context as well as
the architecture of the system of interest. ReqSpec can also be used to represent existing stakeholder and system requirement documents. Re-
quirement documents represented in the Requirements Interchange Format can be imported into OSATE to migrate such documents into an
architecture-centric virtual integration process. Finally, ReqSpec is an element of an architecture-led, incremental approach to system assurance.
In this approach, requirements specifications are complemented with verification plans. When executed, these plans produce evidence that a
system implementation satisfies the requirements. This report introduces the ReqSpec notation and illustrates its use on an example.

14. SUBJECT TERMS

AADL, architecture-centric virtual integration, model-based engineering, OSATE, requirements
specification, system assurance

15. NUMBER OF PAGES

34

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Abstract
	1 Introduction
	2 The ReqSpec Notation
	3 Guidelines for Using ReqSpec with AADL Models
	4 Example Use of ReqSpec
	5 Summary and Conclusion
	Appendix Expression Support for ReqSpec
	References

